Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings.

نویسندگان

  • Clifford R Jack
  • Heather J Wiste
  • Stephen D Weigand
  • David S Knopman
  • Michelle M Mielke
  • Prashanthi Vemuri
  • Val Lowe
  • Matthew L Senjem
  • Jeffrey L Gunter
  • Denise Reyes
  • Mary M Machulda
  • Rosebud Roberts
  • Ronald C Petersen
چکیده

We recently demonstrated that the frequencies of biomarker groups defined by the presence or absence of both amyloidosis (A+) and neurodegeneration (N+) changed dramatically by age in cognitively non-impaired subjects. Our present objectives were to assess the consequences of defining neurodegeneration in five different ways on the frequency of subjects classified as N+, on the demographic associations with N+, and on amyloidosis and neurodegeneration (A/N) biomarker group frequencies by age. This was a largely cross-sectional observational study of 1331 cognitively non-impaired subjects aged 50-89 drawn from a population-based study of cognitive ageing. We assessed demographic associations with N+, and A/N biomarker group frequencies by age where A+ was defined by amyloid PET and N+ was defined in five different ways: (i) abnormal adjusted hippocampal volume alone; (ii) abnormal Alzheimer's disease signature cortical thickness alone; (iii) abnormal fluorodeoxyglucose positron emission tomography alone; (iv) abnormal adjusted hippocampal volume or abnormal fluorodeoxyglucose positron emission tomography; and (v) abnormal Alzheimer's disease signature cortical thickness or abnormal fluorodeoxyglucose positron emission tomography. For each N+ definition, participants were assigned to one of four biomarker groups; A-N-, A+N-, A-N+, or A+N+. The three continuous individual neurodegeneration measures were moderately correlated (rs = 0.42 to 0.54) but when classified as normal or abnormal had only weak agreement (κ = 0.20 to 0.29). The adjusted hippocampal volume alone definition classified the fewest subjects as N+ while the Alzheimer's disease signature cortical thickness or abnormal fluorodeoxyglucose positron emission tomography definition classified the most as N+. Across all N+ definitions, N+ subjects tended to be older, more often male and APOE4 carriers, and performed less well on functional status and learning and memory than N- subjects. For all definitions of neurodegeneration, (i) the frequency of A-N- was 100% at age 50 and declined monotonically thereafter; (ii) the frequency of A+N- increased from age 50 to a maximum in the mid-70s and declined thereafter; and3 (iii) the frequency of A-N+ (suspected non-Alzheimer's pathophysiology) and of A+N+ increased monotonically beginning in the mid-50s and mid-60s, respectively. Overall, different neurodegeneration measures provide similar but not completely redundant information. Despite quantitative differences, the overall qualitative pattern of the A-N-, A+N-, A-N+, and A+N+ biomarker group frequency curves by age were similar across the five different definitions of neurodegeneration. We conclude that grouping subjects by amyloidosis and neurodegeneration status (normal/abnormal) is robust to different imaging definitions of neurodegeneration and thus is a useful way for investigators throughout the field to communicate in a common classification framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defining SNAP by cross-sectional and longitudinal definitions of neurodegeneration

Introduction Suspected non-Alzheimer's pathophysiology (SNAP) is a biomarker driven designation that represents a heterogeneous group in terms of etiology and prognosis. SNAP has only been identified by cross-sectional neurodegeneration measures, whereas longitudinal measures might better reflect "active" neurodegeneration and might be more tightly linked to prognosis. We compare neurodegenerat...

متن کامل

White matter integrity determined with diffusion tensor imaging in older adults without dementia: influence of amyloid load and neurodegeneration.

IMPORTANCE Pathophysiologic mechanisms leading to loss of white matter integrity and the temporal positioning of biomarkers of white matter integrity relative to the biomarkers of gray matter neurodegeneration and amyloid load in the course of Alzheimer disease (AD) are poorly understood. OBJECTIVE To investigate the effects of AD-related gray matter neurodegeneration and high β-amyloid on wh...

متن کامل

APOE allele frequencies in suspected non-amyloid pathophysiology (SNAP) and the prodromal stages of Alzheimer’s Disease

Biomarker definitions for preclinical Alzheimer's disease (AD) have identified individuals with neurodegeneration (ND+) without β-amyloidosis (Aβ-) and labeled them with suspected non-AD pathophysiology (SNAP). We evaluated Apolipoprotein E (APOE) ε2 and ε4 allele frequencies across biomarker definitions-Aβ-/ND- (n = 268), Aβ+/ND- (n = 236), Aβ-/ND+ or SNAP (n = 78), Aβ+/ND+ (n = 204)-hypothesi...

متن کامل

Rates of β-amyloid accumulation are independent of hippocampal neurodegeneration

OBJECTIVE To test the hypotheses predicted in a hypothetical model of Alzheimer disease (AD) biomarkers that rates of β-amyloid (Aβ) accumulation on PET imaging are not related to hippocampal neurodegeneration whereas rates of neurodegenerative brain atrophy depend on the presence of both amyloid and neurodegeneration in a population-based sample. METHODS A total of 252 cognitively normal (CN...

متن کامل

Alzheimer ’s Disease: Possible Mechanisms Behind Neurohormesis Induced by Exposure to Low Doses of Ionizing Radiation

In 2016, scientists reported that human exposure to low doses of ionizing radiation (CT scans of the brain) might relieve symptoms of both Alzheimer’s disease (AD) and Parkinson disease (PD). The findings were unbelievable for those who were not familiar with neurohormesis. X-ray stimulation of the patient’s adaptive protection systems against neurodegenerative diseases was the mechanism pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 138 Pt 12  شماره 

صفحات  -

تاریخ انتشار 2015